Open pore biodegradable matrices formed with gas foaming.

نویسندگان

  • L D Harris
  • B S Kim
  • D J Mooney
چکیده

Engineering tissues utilizing biodegradable polymer matrices is a promising approach to the treatment of a number of diseases. However, processing techniques utilized to fabricate these matrices typically involve organic solvents and/or high temperatures. Here we describe a process for fabricating matrices without the use of organic solvents and/or elevated temperatures. Disks comprised of polymer [e.g., poly (D,L-lactic-co-glycolic acid)] and NaCl particles were compression molded at room temperature and subsequently allowed to equilibrate with high pressure CO2 gas (800 psi). Creation of a thermodynamic instability led to the nucleation and growth of gas pores in the polymer particles, resulting in the expansion of the polymer particles. The polymer particles fused to form a continuous matrix with entrapped salt particles. The NaCl particles subsequently were leached to yield macropores within the polymer matrix. The overall porosity and level of pore connectivity were regulated by the ratio of polymer/salt particles and the size of salt particles. Both the compressive modulus (159+/-130 kPa versus 289+/-25 kPa) and the tensile modulus (334+/-52 kPa versus 1100+/-236 kPa) of the matrices formed with this approach were significantly greater than those formed with a standard solvent casting/particulate leaching process. The utility of these matrices was demonstrated by engineering smooth muscle tissue in vitro with them. This novel process, a combination of high pressure gas foaming and particulate leaching techniques, allows one to fabricate matrices with a well controlled porosity and pore structure. This process avoids the potential negatives associated with the use of high temperatures and/or organic solvents in biomaterials processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.

Macroporous scaffolds composed of biodegradable polymers have found extensive use as three-dimensional substrates either for in vitro cell seeding followed by transplantation, or as conductive substrates for direct implantation in vivo. Methods abound for creation of macroporous scaffolds for tissue engineering, and common methods typically employ a solid porogen within a three-dimensional poly...

متن کامل

Formation of highly porous biodegradable scaffolds for tissue engineering

* Corresponding author In recent years, lack of donor organs has caused many to consider tissue engineering methods as means to replace diseased or damaged organs. This newlyemerging field uses tissue-specific cells in a threedimensional organization, provided by a scaffolding material, to return functionality of the organ. For these applications, the choice of scaffolding material is crucial t...

متن کامل

Solid-state foaming of Ti–6Al–4V by creep or superplastic expansion of argon-filled pores

Ti–6Al–4V foams are produced by the expansion of pressurized argon pores trapped in billets created by powder metallurgy. Pore expansion during thermal cycling (840–1030 C, which induces transformation superplasticity in Ti–6Al–4V) improves both the foaming rate (by reducing the flow stress) and the final porosity (by delaying fracture of the pores and subsequent escape of the gas), as compared...

متن کامل

Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2.

The aim of this study was to investigate the feasibility of fabricating porous crosslinked chitosan hydrogels in an aqueous phase using dense gas CO(2) as a foaming agent. Highly porous chitosan hydrogels were formed by using glutaraldehyde and genipin as crosslinkers. The method developed here eliminates the formation of a skin layer, and does not require the use of surfactants or other toxic ...

متن کامل

Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.

Dexamethasone, a steroidal anti-inflammatory drug, was incorporated into porous biodegradable polymer scaffolds for sustained release. The slowly released dexamethasone from the degrading scaffolds was hypothesized to locally modulate the proliferation and differentiation of various cells. Dexamethasone containing porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 1998